News That Matters

Impact of direct physical association and motility on fitness of a synthetic interkingdom microbial community


  • D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.


    Google Scholar
     

  • López-García P, Moreira D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol. 2020;5:655–67.


    Google Scholar
     

  • Phelan VV, Liu W-T, Pogliano K, Dorrestein PC. Microbial metabolic exchange—the chemotype-to-phenotype link. Nat Chem Biol. 2012;8:26–35.


    Google Scholar
     

  • Smith P, Schuster M. Public goods and cheating in microbes. Curr Biol. 2019;29:R442–R447.


    Google Scholar
     

  • Özkaya Ö, Balbontín R, Gordo I, Xavier KB. Cheating on cheaters stabilizes cooperation in Pseudomonas aeruginosa. Curr Biol. 2018;28:R752–R755.


    Google Scholar
     

  • Schuster M, Foxall E, Finch D, Smith H, De Leenheer P. Tragedy of the commons in the chemostat. PLoS ONE. 2017;12:e0186119.


    Google Scholar
     

  • Welch JLM, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA. 2016;113:E791–E800.


    Google Scholar
     

  • Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci USA. 2008;105:7052–7.


    Google Scholar
     

  • Dal CoA, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M. Short-range interactions govern the dynamics and functions of microbial communities. Nat Ecol Evol. 2020;4:366–75.


    Google Scholar
     

  • Pande S, Kaftan F, Lang S, Svato A, Germerodt S, Kost C. Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. ISME J. 2016;10:1413–23.


    Google Scholar
     

  • Momeni B, Waite AJ, Shou W. Spatial self-organization favors heterotypic cooperation over cheating. Elife. 2013;2:e00960.


    Google Scholar
     

  • Campbell K, Vowinckel J, Mülleder M, Malmsheimer S, Lawrence N, Calvani E, et al. Self-establishing communities enable cooperative metabolite exchange in a eukaryote. Elife. 2015;4:e09943.


    Google Scholar
     

  • Chen F, Wegner SV. Blue-light-switchable bacterial cell-cell adhesions enable the control of multicellular bacterial communities. ACS Synth Biol. 2020;9:1169–80.


    Google Scholar
     

  • Müller MJI, Neugeboren BI, Nelson DR, Murray AW. Genetic drift opposes mutualism during spatial population expansion. Proc Natl Acad Sci USA. 2014;111:1037–42.


    Google Scholar
     

  • Momeni B, Brileya KA, Fields MW, Shou W. Strong inter-population cooperation leads to partner intermixing in microbial communities. Elife. 2013;2:e00230.


    Google Scholar
     

  • Blanchard AE, Lu T. Bacterial social interactions drive the emergence of differential spatial colony structures. BMC Syst Biol. 2015;9:59.


    Google Scholar
     

  • Kovács ÁT. Impact of spatial distribution on the development of mutualism in microbes. Front Microbiol. 2014;5:649.


    Google Scholar
     

  • Harcombe WR, Chacón JM, Adamowicz EM, Chubiz LM, Marx CJ. Evolution of bidirectional costly mutualism from byproduct consumption. Proc Natl Acad Sci USA. 2018;115:12000–4.


    Google Scholar
     

  • Preussger D, Giri S, Muhsal LK, Oña L, Kost C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr Biol. 2020;30:3580–3590.e7


    Google Scholar
     

  • Marchal M, Goldschmidt F, Derksen-Müller SN, Panke S, Ackermann M, Johnson DR. A passive mutualistic interaction promotes the evolution of spatial structure within microbial populations. BMC Evol Biol. 2017;17:106.


    Google Scholar
     

  • Mehta AP, Supekova L, Chen J-H, Pestonjamasp K, Webster P, Ko Y, et al. Engineering yeast endosymbionts as a step toward the evolution of mitochondria. Proc Natl Acad Sci USA. 2018;115:11796–801.


    Google Scholar
     

  • Karkar S, Facchinelli F, Price DC, Weber APM, Bhattacharya D. Metabolic connectivity as a driver of host and endosymbiont integration. Proc Natl Acad Sci USA. 2015;112:10208–15.


    Google Scholar
     

  • Mergaert P, Kikuchi Y, Shigenobu S, Nowack ECM. Metabolic integration of bacterial endosymbionts through antimicrobial peptides. Trends Microbiol. 2017;25:703–12.


    Google Scholar
     

  • Pande S, Shitut S, Freund L, Westermann M, Bertels F, Colesie C, et al. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun. 2015;6:6238.


    Google Scholar
     

  • Shitut S, Ahsendorf T, Pande S, Egbert M, Kost C. Nanotube-mediated cross-feeding couples the metabolism of interacting bacterial cells. Environ Microbiol. 2019;21:1306–20.


    Google Scholar
     

  • Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol. 2016;14:589–600.


    Google Scholar
     

  • Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 2003;11:94–100.


    Google Scholar
     

  • Steffan BN, Venkatesh N, Keller NP. Let’s get physical: bacterial-fungal interactions and their consequences in agriculture and health. J Fungi. 2020;6:243.


    Google Scholar
     

  • Schweitzer-Natan O, Ofek-Lalzar M, Sher D, Sukenik A. Particle-associated microbial community in a subtropical lake during thermal mixing and phytoplankton succession. Front Microbiol. 2019;10:2142.


    Google Scholar
     

  • Cai YM. Non-surface attached bacterial aggregates: a ubiquitous third lifestyle. Front Microbiol. 2020;11:557035.


    Google Scholar
     

  • Monteil CL, Vallenet D, Menguy N, Benzerara K, Barbe V, Fouteau S, et al. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat Microbiol. 2019;4:1088–95.


    Google Scholar
     

  • Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol. 2021;31:R862–R877.


    Google Scholar
     

  • Müller J, Overmann J. Close Interspecies Interactions between Prokaryotes from sulfureous environments. Front Microbiol. 2011;2:146.


    Google Scholar
     

  • Overmann J, van Gemerden H. Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev. 2000;24:591–9.


    Google Scholar
     

  • Johnson WM, Alexander H, Bier RL, Miller DR, Muscarella ME, Pitz KJ, et al. Auxotrophic interactions: a stabilizing attribute of aquatic microbial communities? FEMS Microbiol Ecol. 2020;96:fiaa115.


    Google Scholar
     

  • Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev. 2021;45:fuab038.


    Google Scholar
     

  • Raina J-B, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol. 2019;17:284–94.


    Google Scholar
     

  • Robinson CD, Sweeney EG, Ngo J, Ma E, Perkins A, Smith TJ, et al. Host-emitted amino acid cues regulate bacterial chemokinesis to enhance colonization. Cell Host Microbe. 2021;29:1221–1234.e8


    Google Scholar
     

  • Konopka A. What is microbial community ecology? ISME J. 2009;3:1223–30.


    Google Scholar
     

  • Jann K, Schmidt G, Blumenstock E, Vosbeck K. Escherichia coli adhesion to Saccharomyces cerevisiae and mammalian cells: role of piliation and surface hydrophobicity. Infect Immun. 1981;32:484–9.


    Google Scholar
     

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997;277:1453–62.


    Google Scholar
     

  • Jensen SI, Lennen RM, Herrgård MJ, Nielsen AT. Seven gene deletions in seven days: Fast generation of Escherichia coli strains tolerant to acetate and osmotic stress. Sci Rep. 2016;5:17874.


    Google Scholar
     

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002;418:387–91.


    Google Scholar
     

  • Abraham JM, Freitag CS, Clements JR, Eisenstein BI. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci USA. 1985;82:5724–7.


    Google Scholar
     

  • Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell. 2011;144:590–600.


    Google Scholar
     

  • Hallatschek O, Hersen P, Ramanathan S, Nelson DR. Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci USA. 2007;104:19926–30.


    Google Scholar
     

  • D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution. 2014;68:2559–70.


    Google Scholar
     

  • Wang M, Schaefer AL, Dandekar AA, Greenberg EP. Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc Natl Acad Sci USA. 2015;112:2187.


    Google Scholar
     

  • Greig D, Travisano M. The Prisoner’s Dilemma and polymorphism in yeast SUC genes. Proc R Soc Lond Ser B Biol Sci. 2004;271:S25–S26.


    Google Scholar
     

  • Parker DJ, Demetci P, Li GW. Rapid accumulation of motility-activating mutations in resting liquid culture of Escherichia coli. J Bacteriol. 2019;201:e00259–19.


    Google Scholar
     

  • Ni B, Colin R, Link H, Endres RG, Sourjik V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc Natl Acad Sci USA. 2020;117:595–601.


    Google Scholar
     

  • Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.


    Google Scholar
     

  • Friedlander RS, Vogel N, Aizenberg J. Role of flagella in adhesion of Escherichia coli to abiotic surfaces. Langmuir. 2015;31:6137–44.


    Google Scholar
     

  • Suchanek VM, Esteban‐López M, Colin R, Besharova O, Fritz K, Sourjik V. Chemotaxis and cyclic‐di‐GMP signalling control surface attachment of Escherichia coli. Mol Microbiol. 2020;113:728–39.


    Google Scholar
     

  • Ni B, Ghosh B, Paldy FS, Colin R, Heimerl T, Sourjik V. Evolutionary remodeling of bacterial motility checkpoint control. Cell Rep. 2017;18:866–77.


    Google Scholar
     

  • Wintermute EH, Silver PA. Emergent cooperation in microbial metabolism. Mol Syst Biol. 2010;6:407.


    Google Scholar
     

  • Shou W, Ram S, Vilar JMG. Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci USA. 2007;104:1877–82.


    Google Scholar
     

  • Pande S, Merker H, Bohl K, Reichelt M, Schuster S, Figueiredo LFde, et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 2014;8:953–62.


    Google Scholar
     

  • Koo H, Andes DR, Krysan DJ. Candida–streptococcal interactions in biofilm-associated oral diseases. PLoS Pathog. 2018;14:e1007342.


    Google Scholar
     

  • Stadie J, Gulitz A, Ehrmann MA, Vogel RF. Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food Microbiol. 2013;35:92–98.


    Google Scholar
     

  • Cordero OX, Datta MS. Microbial interactions and community assembly at microscales. Curr Opin Microbiol. 2016;31:227–34.


    Google Scholar
     

  • Grossart HP, Riemann L, Azam F. Bacterial motility in the sea and its ecological implications. Aquat Micro Ecol. 2001;25:247–58.


    Google Scholar
     

  • Emge P, Moeller J, Jang H, Rusconi R, Yawata Y, Stocker R, et al. Resilience of bacterial quorum sensing against fluid flow. Sci Rep. 2016;6:33115.


    Google Scholar
     

  • Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563–75.


    Google Scholar
     

  • Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24:50–55.


    Google Scholar
     

  • Yan H, Wang M, Sun F, Dandekar AA, Shen D, Li N. A metabolic trade-off modulates policing of social cheaters in populations of Pseudomonas aeruginosa. Front Microbiol. 2018;9:337.


    Google Scholar
     

  • Cavaliere M, Yang G, Danos V, Dakos V. Detecting the collapse of cooperation in evolving networks. Sci Rep. 2016;6:30845.


    Google Scholar
     

  • Gore J, Youk H, Van, Oudenaarden A. Snowdrift game dynamics and facultative cheating in yeast. Nature. 2009;459:253–6.


    Google Scholar
     

  • Bastiaans E, Debets AJM, Aanen DK. Experimental evolution reveals that high relatedness protects multicellular cooperation from cheaters. Nat Commun. 2016;7:11435.


    Google Scholar
     

  • Velicer GJ, Kroos L, Lenski RE. Developmental cheating in the social bacterium Myxococcus xanthus. Nature. 2000;404:598–601.


    Google Scholar
     

  • Moreno-Fenoll C, Cavaliere M, Martínez-García E, Poyatos JF. Eco-evolutionary feedbacks can rescue cooperation in microbial populations. Sci Rep. 2017;7:42561.


    Google Scholar
     

  • Sanchez A, Gore J. Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLoS Biol. 2013;11:e1001547.


    Google Scholar
     

  • Wilson DS. A theory of group selection. Proc Natl Acad Sci USA. 1975;72:143–6.


    Google Scholar
     

  • Chuang JS, Rivoire O, Leibler S. Simpson’s Paradox in a synthetic microbial system. Science. 2009;323:272–5.


    Google Scholar
     

  • Lambert BS, Fernandez VI, Stocker R. Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnol Oceanogr Lett. 2019;4:113–8.


    Google Scholar
     

  • Schauer O, Mostaghaci B, Colin R, Hürtgen D, Kraus D, Sitti M, et al. Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display. Sci Rep. 2018;8:9801.


    Google Scholar
     

  • Taylor JR, Stocker R. Trade-offs of chemotactic foraging in turbulent water. Science. 2012;338:675–9.


    Google Scholar
     

  • Rusconi R, Guasto JS, Stocker R. Bacterial transport suppressed by fluid shear. Nat Phys. 2014;10:212–7.


    Google Scholar
     

  • Durham WM, Climent E, Barry M, De Lillo F, Boffetta G, Cencini M, et al. Turbulence drives microscale patches of motile phytoplankton. Nat Commun. 2013;4:2148.


    Google Scholar
     



  • Source link